Some Remarks on First Passage of Lévy Processes, the American Put and Pasting

نویسنده

  • A. E. KYPRIANOU
چکیده

The purpose of this article is to provide, with the help of a fluctuation identity, a generic link between a number of known identities for the first passage time and overshoot above/below a fixed level of a Lévy process and the solution of Gerber and Shiu (1994), Boyarchenko and Levendorskǐi (1998, 1999, 2002), Chan (2000), Avram et al. (2002), Mordecki (2002), Asmussen et al. (2004) and Chesney and Jeanblanc (2004) to the American perpetual put optimal stopping problem. Furthermore, we make folklore precise and give necessary and sufficient conditions for smooth pasting to occur in the considered problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on First Passage of Lévy Processes, the American Put and Pasting Principles by L. Alili

Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP ...

متن کامل

Some Remarks on First Passage of Levy Processes, the American Put and Pasting Principles

The purpose of this article is to provide, with the help of a fluctuation identity, a generic link between a number of known identities for the first passage time and overshoot above/below a fixed level of a Lévy process and the solution of Gerber and Shiu [Astin Bull. 24 (1994) 195–220], Boyarchenko and Levendorskǐi [Working paper series EERS 98/02 (1998), Unpublished manuscript (1999), SIAM J...

متن کامل

O ct 2 00 7 Remarks on the American Put Option for Jump Diffusions ∗ †

We prove that the perpetual American put option price of an exponential Lévy process whose jumps come from a compound Poisson process is the classical solution of its associated quasi-variational inequality, that it is C except at the stopping boundary and that it is C everywhere (i.e. the smooth pasting condition always holds). We prove this fact by constructing a sequence of functions, each o...

متن کامل

Remarks on the Perpetual American Put Option for Jump Diffusions ∗ †

We prove that the perpetual American put option price of an exponential Lévy process whose jumps come from a compound Poisson process is the classical solution of its associated quasi-variational inequality, that it is C except at the stopping boundary and that it is C everywhere (i.e. the smooth pasting condition always holds). We prove this fact by constructing a sequence of functions, each o...

متن کامل

2 8 A ug 2 00 7 Remarks on the American Put Option for Jump Diffusions ∗ †

We prove that the perpetual American put option price of an exponential Lévy process whose jumps come from a compound Poisson process is the classical solution of its associated quasi-variational inequality, that it is C except at the stopping boundary and that it is C everywhere (i.e. the smooth pasting condition always holds). We prove this fact by constructing a sequence of functions, each o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005